黄博士网: 在线数学手册计算器软件,电化学虚拟实验室,虚拟电化学工作站,电化学软件 首页 | 目录 | 世界 | 学科 | 理科 | 数学 | 物理 | 化学 | 计算机 | 医学 | 书单 | 索引 | 帮助

几何

二级学科,      专业名称:几何学,      门类/类别:理学,      学科/类别:数学

几何学(英语:Geometry,古希腊语:γεωμετρία)简称几何。几何学是数学的一个基础分支,主要研究形状、大小、图形的相对位置等空间区域关系以及空间形式的度量。 几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析代数是3大基础数学, 并且关系极为密切。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。 几何思想是数学中最重要的一类思想。暂时的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。常见定理有勾股定理,欧拉定理,斯图尔特定理等。

三级学科

▪ 2710:几何学基础   ▪ 2715:欧氏几何学       ▪ 2720:非欧几何学   
▪ 2725:球面几何学   ▪ 2730:向量和张量分析   ▪ 2735:仿射几何学   
▪ 2750:分数维几何   ▪ 2740:射影几何学       ▪ 2745:微分几何学   
▪ 2755:计算几何学   ▪ 2799:几何学其他学科    

分支

初等几何

初等几何 = 平面几何 + 立体几何

平面几何

最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。

平面几何的内容也很自然地过渡到了三维空间的立体几何。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。

立体几何

立体几何归结为三维空间解析几何的研究范畴,从而研究二次曲面(如球面,椭球面、锥面、双曲面,鞍面)的几何分类问题,就归结为研究代数学中二次型的不变量问题。

解析几何

笛卡尔引进坐标系后,代数与几何的关系变得明朗, 且日益紧密起来。这就促使了解析几何的产生。解析几何是由笛卡尔、费马分别独立创建的。这又是一次具有里程碑意义的事件。从解析几何的观点出发,几何图形的性质可以归结为方程的分析性质和代数性质。 几何图形的分类问题(比如把圆锥曲线分为三类),也就转化为方程的代数特征分类的问题,即寻找代数不变量的问题。

欧几里德几何 = 欧氏几何

欧几里德几何 = 初等几何 + 解析几何

欧几里得几何简称“欧氏几何”,是几何学的一门分科。数学上,欧几里得几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。

欧氏几何源于公元前3世纪。古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理(公设),在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。按所讨论的图形在平面上或空间中,又分别称为“平面几何”与“立体几何”。

其中公理五又称之为平行公设(Parallel Postulate),叙述比较复杂,并不像其他公理那么显然。这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利人波尔约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即“非欧几何”(non-Euclidean geometry)。

另一方面,欧几里得几何的五条公理并未具有完备性。例如,该几何中有定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。 因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。

非欧几何

总体上说,上述的几何都是在欧氏空间的几何结构--即平坦的空间结构--背景下考察,而没有真正关注弯曲空间下的几何结构。欧几里得几何公理本质上是描述平坦空间的几何特性,特别是第五公设引起了人们对其正确性的疑虑。由此人们开始关注其弯曲空间的几何, 即“非欧几何”。

在欧几里德的时代,实际空间和几何空间之间没有明显的区别,但自从十九世纪发现非欧几何后,空间的概念有了大幅的调整,也开始出现哪一种几何空间最符合实际空间的问题。在二十世纪形式数学兴起以后, 空间(包括点、线、面)已没有其直观的概念在内。今日需要区分实体空间、几何空间(点、线、面仍没有其直观的概念在内)以及抽象空间。当代的几何学考虑流形,空间的概念比欧几里德中的更加抽象,两者只在极小尺寸下才彼此近似。 这些空间可以加入额外的结构,因此可以考虑其长度。近代的几何学和物理关系密切,就像伪黎曼流形和广义相对论的关系一样。物理理论中最年轻的弦理论也和几何学有密切关系。

非欧几何中包括了最经典几类几何学课题, 比如“球面几何”,“罗氏几何”等等。另一方面,为了把无穷远的那些虚无缥缈的点也引入到观察范围内, 人们开始考虑射影几何。

这些早期的非欧几何学总的来说,是研究非度量的性质,即和度量关系不大,而只关注几何对象的位置问题--比如平行、相交等等。 这几类几何学所研究的空间背景都是弯曲的空间。

微分几何

为了引入弯曲空间的上的度量(长度、面积等等),我们就需要引进微积分的方法去局部分析空间弯曲的性质。微分几何于是应运而生。研究曲线和曲面的微分几何称为古典微分几何。但古典微分几何讨论的对象必须事先嵌入到欧氏空间里, 才定义各种几何概念等等(比如切线、曲率)。

内蕴几何

一个几何概念如果和几何物体所处的空间位置无关,而只和其本身的性态相关,我们就说它是内蕴的。用物理的语言来说,就是几何性质必须和参考系选取无关。 哪些几何概念是内蕴性质的?这是当时最重要的理论问题。高斯发现了曲面的曲率(即反映弯曲程度的量)竟然是内蕴的---尽管它的原始定义看上去和所处的大空间位置有关。这个重要发现就称为高斯绝妙定理。古典几何的另一个重要发现就是高斯-博纳特公式, 它反映了曲率和弯曲空间里的三角形三角之和的关系。

黎曼几何

研究内蕴几何的学科首属黎曼几何. 黎曼在一次著名的演讲中,创立了这门奠基性的理论。它首次强调了内蕴的思想, 并将所有此前的几何学对象都归纳到更一般的范畴里,内蕴地定义了诸如度量等等的几何概念。 这门几何理论打开了近代几何学的大门, 具有里程碑的意义。它也成为了爱因斯坦的广义相对论的数学基础。

黎曼几何出发,微分几何进入了新的时代,几何对象扩展到了流形(一种弯曲的几何物体)上--这一概念由庞加莱引入。由此发展出了诸如张量几何、黎曼曲面理论、复几何、霍奇理论、纤维丛理论、芬斯勒几何、莫尔斯理论、形变理论等等。

代数几何

从代数的角度看, 几何学从传统的解析几何发展成了更一般的一门理论--代数几何。传统代数几何就是研究多项式方程组的零点集合作为几何物体所具有的几何结构和性质--这种几何体叫做代数簇。解析几何所研究的直线、圆锥曲线、球面、锥面等等都是其中的特例。 稍微推广一些,就是代数曲线,特别是平面代数曲线, 它相应于黎曼曲面。代数几何可以用交换代数的环和模的语言来描述,也可以从复几何、霍奇理论等分析的方法去探讨。代数几何的思想也被引入到数论中, 从而促使了抽象代数几何的发展,比如算术代数几何。

拓扑学

拓扑学是和传统几何密切相关的一门重要学科,也可以视为一种“柔性”的几何学, 也是所有几何学的研究基础。拓扑学研究始于欧拉,经由庞加莱等人的研究发展,逐渐成为比较成熟的数学分支和活跃的研究方向。拓扑学思想是数学思想中极为关键的内容。 它讨论了刻画几何物体最基本的一些特征,比如亏格(洞眼个数)等等 。由此发展出了同调论、同伦论等等基础性的理论。

其他学科

除了以上传统几何学之外,我们还有闵可夫斯基建立的“数的几何”; 与近代物理学密切相关的新学科“热带几何”;探讨维数理论的“分形几何”;还有“凸几何”、“组合几何”、“计算几何”、“排列几何”、“直观几何”等等。

重要概念

公理

参见:欧几里得空间 欧几里得所提出的抽象概念,进而使得《几何原本》列入了最有影响力的书籍之一,欧几里得提出五大公理和公设(英语没有公设词条),揭示了点线面的自可证的基本性质,他一直试图通过其他数学理论来严谨性推导其他性质,而这也是欧几里得陈述的最特色的地方,并使得几何更加公理化和系统化(英语:synthetic geometry)。19世纪初,尼古拉·罗巴切夫斯基 (1792–1856), 鲍耶·亚诺什 (1802–1860), 卡尔·弗里德里希·高斯 (1777–1855)对非欧几里得几何的探索使得几何学领域又得以重新发展,而在20世纪初,大卫希尔伯特把公理性证明的引入成就了现代几何学的出现。

点作为欧几里得空间的基本构成,通过很多方式定义,包括欧几里得所定义的“点不占据空间[9]”以及在代数与嵌套空间的引用。在几何学的众多领域,包括分析几何,微分几何,以及拓扑学,所有的单元都是点构造出来的,然而,有些几何学的研究缺乏对点这个元素的参照。

线

欧几里得把线形容成‘在点之间均匀铺着’的‘没有宽度的长度’,在现代数学体系已给知的多元几何中,线的定义也相当的接近几何学中的定义,例如在解析几何中,点坐标的集合所构成的一个已知一次方程称为线,而在像重合几何这种更抽象的设定中,线可以是个单独的对象,而区别于点的集合所构成的情况。在微分几何中,对曲率不为0的流形,测地线往往更好能表达线的概念。

平面

二维,光滑且无限延展的平层构成了平面,几何学到处都会用到面,例如,研究拓扑学的曲面对象可以看作一个没有距离和角度做参照的平层;对在仿射空间的面,没有参照距离却有共线性和曲率的研究。或是在高斯平面(复平面)需要用到复分析等。

欧几里得所描述的平面角,是指在一个平面内两条相交却不平行的直线中间的倾角在现代几何学名词中,共有一个顶点的两条射线形成角的两边,而所形成的角度称为角。

在欧几里得几何中,角一般用来研究多边形或三角形,也有对其本身的研究[9]对三角形或单位圆中对角的研究构成了三角学的基础。

在微分几何和微积分学中, 平面曲线,曲线和曲面内的角可以用导数表示.

著名定理

1.勾股定理(毕达哥拉斯定理).
2.射影定理(欧几里德定理).
3.三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分。
4.四边形两边中心的连线与两条对角线中心的连线交于一点。
5.间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6.三角形各边的垂直平分线交于一点。
7.三角形的三条高线交于一点。
8.设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL.
9.三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10.(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足, 以及垂心与各顶点连线的中点,这九个点在同一个圆上,
11.欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上. 
参阅
  1. 数学 - 数学符号 - 数学索引
  2. 手册 - 数学手册 - 实用数学手册
  3. 初等数学 = 中学数学 = 初中数学 + 高中数学
  4. 高等数学 = 代数 + 几何 + 分析
  5. 公式 - 图表 - 动画 - 立体图
  6. 书单 = 数学 + 物理 + 化学 + 计算机 + 医学 + 英语 - QQ群 614057790 下截书
  7. 数学软件 - 数学手册计算器 = 数学 + 手册 + 计算器
  8. 例题:

首页 | 目录 | 论坛 | 联系 | 版权 | 书单 | 关于 | 索引 | 帮助 | English